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By V. Thuraisamy* 

Abstract. This paper is concerned with the formulation of finite-difference 
analogues of mixed boundary value problems for Poisson's equation. A discrete 
approximation to the normal derivative is devised such that the matrix of the re- 
sulting system is of monotone type. This enables us to prove that the rate of con- 
vergence is O(h2), where h is the mesh constant. E 

1. Introduction. In this paper we are concerned with the following problem. R is 
a bounded domain, in the plane E2, with its boundary (R suitably smooth. OR is 
made up of R,1 and IR2. For P = P(x, y) E = R U (R we seek a function u(P) 
which satisfies the equations 

-Au(P) = f (P), P I R, 

(1.1) 3u(P)/3n + a(P)u(P) = g1(P), P EC aR 

u(P) = 92(P), P E aRI2, 

where A = 82/8X2 + 02/3y2, 3/3n is the outward normal derivative and f, gl, g2 are 
appropriately smooth given functions. a(x) > 0 is piecewise differentiable on aR1. 

This problem (sometimes with f _ 0) has been discussed in [3] where questions 
such as regularity assumptions, isolated singularities and exterior problems are 
studied for R in space En, n > 2. The main work here is centered around the de- 
velopment of a new second-order approximation to the normal derivative and 
establishing that the resulting matrix of the discrete system possesses a nonnegative 
inverse. This matrix is not of positive type [1]. 

Higher-order schemes for this problem were studied by Bramble and Hubbard 
[2] (whose notations are followed here) where they had to restrict the mesh size h 
severely to guarantee the positivity of the matrix. Also, at each boundary mesh 
point, several systems of simultaneous equations had to be solved to select three 
of the nearby points (within lOh) in order to write the corresponding equation. In 
the method given here, points can be chosen a priori. The restriction imposed in [2] 
that on M1I if a(P) # 0, it should be bounded away from zero, is also removed. 
When the solution of (1.1) is sufficiently smooth, the convergence is shown to be 
O(h2). 

2. Discrete Analogue. With uniform mesh, the set Rh of grid points in R is 
divided between Rh' and Rh* where the latter constitutes the points which are at 
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distance less than h from OR1 measured along the mesh lines. We then write 
Tha = aRh U Rh, where 'Rh is the set common to aR and the grid lines. 

In describing the construction of the boundary operator, we shall, for definite- 
ness, consistently refer to Fig. 1(a). The boundary is assumed to have a con- 
tinuously turning tangent. 0 is the point on ORE,, where we wish to approximate the 
normal derivative. ON is the normal at 0. OL, OM are the two lines making angles of 
450 on either side of ON. Let OL make an angle (7r/2 - 0) with the positive x-axis. 
We pick a point A on OL which also lies on a mesh line, and a point B on OM such 
that the length OA equals the length OB. In general, B would not be on a mesh line. 
We let C and D be the nearest points to B that are on OM and also on mesh lines. 
We now pick nine points in Rh which are all within 0(h) of 0 and label them as in 
the figure, where, several of them may be actually on OR. We also note that although 
for the sake of clarity we shall continue to talk of these nine points as distinct, it 
can happen that two or more of these points are in fact the same mesh points 
[e.g., see Figs. 1(b) and 1(c)]. 
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FIGURE 1 

We shall write (with 12, e.g., being distance between points 1 and 2) 

(2.1) 12 = 1h, 2A =Xh, A3=gh, 

(2.2) hcosecO = h2, 0 = t2h2, B = X2h2, D =2h2 

(2.3) 45= 3, 5=X3, C6= 3, 

(2.4) 78 = D, 8=X4, D9 =,A4, 

where Xi + gi 3 ai, i 1, 2, 3, 4 and the quantities asi, t are such that 0 < aX, 
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? 1 except that a2 1 and t2 (>0) may exceed unity. If we define 

ai= -i + Xi)( i + ai)/(Xiai), 

(2.5) bi = Qi + Xit/(,uiai), i = 1, 2, 3, 4, 
ci= + ai + bi, 

then for u E C3(R) we have 

(2.6) u(A) = [u(1) + alu(2) + blu(3)]/c1 + 0(h3) 

(2.7) u (B) = [u (0) + a2u (C) + b2u(D)]/c2 + 0(h3), 

(2.8) u (C) = [u (4) + a3u (5) + b3u (6) ]/c3 + 0 (h3) 

(2.9) u(D) = [u(7) + a4u(8) + b4u(9)]/C4 + O(h3) 

Using (2.8) and (2.9) in (2.7) gives 

(2.10) u(B) = {u(0) + a2(u(4) + a3u(5) + b3u(6))/c3 

+ b2 (u (7) + a4u (8) + b4u (9))/c4 }/C2 + 0 (h3) . 
Letting p be the perpendicular distance of 0 from the line joining A and B, we easily 
verify that 

(2.11) u(O) - (u(A) + u(B))/2 = au (0) A- 
u (0) + 0 (P2) 

P a~~~n 2 
For the convenience of possible users we give (2.11) in its final form below in which 
we have written ti + Xi = ci and ti + ac = ri, i = 1, 2, 3, 4. 

u(0)(1 + + u(1) - 2ut u(2) - 2 u(3) 
6T2 2~u(1) -2ailin() 2airi 

+ (02/2 X3ji3 u(4) - (2/2 (03/3 (5) (02/12 w3'3 u (6) 
(2.12) 2M2 73T3 26 au 3 262 O3T3 

+ 2X2 X4/.L4 
_ 2X2 C4X4 _ 2X2 4A U(4X4 + 

2r2 4T4 
u(7) 

2r2 4a4 
u(8) 

2-2 44 

= P d-(0) _ P2 Au(0) + O (h3). 
an 2 

We now pose the discrete problem. For the Laplacian we take the well-known 
five point operator Ah in Rh' and its modified five point form for points of Rh* 
(the Ah(1) of [3]). This is known to have local error O(h2) in Rh' and O(h) in Rh*. 
For (x, y) E aR1,h we define 

9 9 

(2.13) Bhu(x, y) d j (i) _ j =(i) 

where u(O) u(x, y) and p(O) is the value of p associated with (x, y). 

(2.14) do= 1 + 2/A2 + a(O)p(O). 

di, i = 1, * , 9, are the coefficients of u(i) in (2.12). The difference analogue of 
problem (1.1) now reads 
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-AhU(P) = f (P) in Rh, 

(2.15) Bhu(P) = g1(P) - pf(P)/2 on OR,,h, 

u (P) = g2 (P) on 0R2,h . 

If A is the matrix of the system (2.15) then there is a diagonal matrix D such 
that A = DA has unit diagonal. Typical patterns of A are shown in Fig. 2. 
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FIGURE 2 

3. Monotonicity of the Matrix A. We now state known sufficient conditions for 
a matrix to be monotone type [1]. 

THEOREM 1 (BRAMBLE-HUBBARD). Let B be a square matrix having unit diagonal 
and such that 

(3.1) bij > O. 

with strict inequality holding for j ? J(B) =0. Assume that it is possible to write B 
as the matrix sum I - H1 - H2, where I is the unit matrix, such that 
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(a) (H1),. = 0 (i.e., diagonal entries are zero) 
(b) I - H1 is of positive type, 

(3.2) (c) (I - Hi)-H2 > 0, 
(d) for each k a J(B) there exists a connection in H1 from k to J(B); iie., 

3 a sequence of nonzero elements hkkl, * *, hk where j E J (B) 

Then B is monotone. 
With the help of this theorem we shall now establish that our matrix A is 

monotone. 
THEOREM 2. A is a monotone matrix provided that the point A in Fig. 1 is chosen 

such that the ,ii and ti, i = 1, 2, 3, 4, meet conditions (3.3), (3.5)-(3.8) together with 
occasional remarks in the neighborhoods of these conditions as described in the proof. 

Proof. Writing I - H1 - H2, it will be convenient to refer to diagrams 
giving typical patterns of H1 and H2. We have done this for H2 in Fig. 3. For (x, y) 
& &R ih the possible nonzero entries of H1 would come from the 'connections' 2, 5 
and 8, their values being simply the corresponding coefficients ct, where P; are the 
results of normalizing ci of (2.13) in going from A to X. 
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FIGURE 3 

For (%, 7) E Rh*, we go to Fig. 2b. By the definition of Ah, 01, 02, -71, 72 are in 
(0, 1] with at least one of them exactly unity. r is the quantity O171O272/(/1'Y1 + 02Y2). 
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Thus the e's in Fig. 3b can be chosen small enough and positive to leave each of the 
off-diagonal entries positive (nonnegative would suffice) for H1. 

For (D, co) E Rh' we subtract off a quantity. e from the absolute value of the 
off-diagonal entries of A such that the remainders are still positive. Once H1 is 
chosen in this manner, the identity A = I - H1 - H2 automatically determines H2. 

To continue with the proof we first note that conditions (a) and (d) of Theorem I 
hold for A as seen from the construction of H1. The validity of (b) may be verified 
from the definition of a positive type matrix, but requires the assumption 

(3-3) As- i, i = 1, 2, 3,4. 

The nontrivial part of the proof is to verify that (I - Hi)-'H2 _ 0. We expand this 
product as 

(3.4) (I - H)-lH2= H2 + H1H12 + H12H2 + 

the validity of this expansion being seen easily from the Gershgorin's inclusion 
theorem (or see f4, p. 46]). 

H1 
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FIGURE 4 

The only negative terms of H2 occur in 'connections' corresponding to points 
(x, y) & OR1,h, the magnitudes of these terms depending on several factors which we 
now examine briefly. For the sake of brevity we assume (and this is of no significance 
in practice) that 

(3.5) either {i or a i is unity for i = 1 and i = 3. 

For - ff Our first aim is to show that A may be chosen such that the negative 
term e5 in H2 is cancelled out by the positive term coming out of H1H2. E.g., let 
CY = 1, '1 C ORh. Then from (2.12), we need an E simultaneously satisfying (Fig. 4) 

1 + 1 __ _ _ _ 

241 A>221 + 1)' 

where {j is the 32 of Fig. 2 and (Figs. 1(b), 3(b)) 

E < 7Y1f1/ (711 + 032) (32 + 1). 

Such an e exists iff X1 < f1iyi. In general we can summarize the situations in all 
possible cases as follows. Without loss of generality we assume A to be on a line in 
the y-direction and C, D on lines in the x-direction. Then an E (or an appropriately 
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adorned e) can be found within the permitted range iff 

(3.6) xi < lvyl/cal. 

For-jC4|. Let us assume that yi = 72 = 1, the contrary happening, only with 
an exceptionally reckless choice of A. Then we find that 

(3.7) X3W < 32 

is sufficient, w being unity or O1 according as 43 = 1O or a3 = 01. 
For- I7j1. The situation here, obviously, is analogous to that of -?41. Since 

42 + 1 > 1, '8' will almost always be in Rh". The possible cases are 
(i) a4 < l, 4 =1, 

(ii)a4 =,44 <1. 

There is no constraint on the choice of A in case (i). In case (ii), which can 
happen only when 42 < 1, we must require that 

(3.8) 12 > 4. 

We must bear in mind that in the above discussion we have constantly referred 
to Figs. 2 and 3 and the numbers 13i, 12, 71, 72 correspond respectively to '2', '5' or 
'8' according to whether we are considering el, iN or 07. The above analysis remains 
entirely valid for the case of one or more of the nine points coinciding, since the 
terms in H1H2 required to dominate the term in H2 remain uncompromised by 
superposition. Also we note that often an interior point may be involved in more 
than one equation of type (2.13), but the e's can still be found without any further 
restrictions on the choice of A. 

To complete the proof: We already have H2 + H1H2 nonnegative. Writing 
(3.4) as 

00 

(I-H1)-'H2 = E Hl2f(H2 + H1H2) 
n=O 

and using the fact that Hl2n is positive for all n, we see that A meets also condition 
(c) of Theorem 1. Since D is a diagonal matrix with positive diagonal elements, A 
must also be of monotone type. 

4. Error Estimates. Given the monotonicity of A, we may proceed to define a 
Robin's function, write down a representation formula and establish bounds for 
discrete sums of the Robin's function over Rh', etc., exactly as in [3]. Therefore we 
merely state the conclusion as 

THEOREM 3. Let u E C4(R) be the solution of problem (1.1). Let u(P, h) be the solu- 
tion of system (2.15). Then the error e(P, h) _ u(P) - u(P, h) satisfies 

le( ,h)1 hKh2. 

Remark. It is important to note that if ro is the infimum of the positive radii of 
curvature (i.e.,'when circles of curvature C I?) of OR, then for any '0' E aR ,h it is 
always possible to choose A such that '2', '5' and '8' would be in Rh' provided 
5h < ro. With such a choice of A all restrictions encountered in the proof of the 
monotonicity theorem are removed. This can be quite easily seen by working with a 
circle of radius 5h. 
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It will be easy to doubt the viability of a method that involves nine points to 
approximate the boundary operator. In fact, however, because of the simple pattern 
in the coefficients of (2.17), they are determined quickly and easily once the point 
A is picked wisely. 

The only numerical experiment carried out for our scheme was a simple-minded 
one where we took for R the unit disc with center at (c, 0) and used I log(x2 + y2) 
as u(x, y). OR1 was a semicircular arc and a(x) was unity there. A rather coarse mesh 
was taken with h = 0.2. This together with the symmetry of the function about a 
diameter resulted in a matrix of order 54 (effective order 46, excluding points on 
OR2). The system of linear equations was solved by the point Gauss-Seidel iterative 
method [4] (about 70 secs. on IBM 7094) and results compared with the exact 
values. For c > 3 there were only two points where the relative error exceeded 
2 % (max value 2.4 %) and at most points this was down to less than one percent. 
As c approached unity, the expected deterioration was noticed. 
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